
Detecting vortices in superconductors: Extracting one-dimensional topological singularities from a
discretized complex scalar field

Carolyn L. Phillips,1, ⇤ Tom Peterka,1 Dmitry Karpeyev,1 and Andreas Glatz2

1
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

2
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

(Dated: January 15, 2015)

In type-II superconductors, the dynamics of superconducting vortices determine their transport properties.
In the Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter.
Extracting their precise positions and motion from discretized numerical simulation data is an important, but
challenging task. In the past, vortices have mostly been detected by analyzing the magnitude of the complex
scalar field representing the order parameter and visualized by corresponding contour plots and isosurfaces.
However, these methods, primarily used for small-scale simulations, blur the fine details of the vortices, scale
poorly to large-scale simulations, and do not easily enable isolating and tracking individual vortices. Here
we present a method for exactly finding the vortex core lines from a complex order parameter field. With this
method, vortices can be easily described at a resolution even finer than the mesh itself. The precise determination
of the vortex cores allows the interplay of the vortices inside a model superconductor to be visualized in higher
resolution than has previously been possible. By representing the field as the set of vortices, this method also
massively reduces the data footprint of the simulations and provides the data structures for further analysis and
feature tracking.

I. INTRODUCTION

Many phenomena in nature can be described by the be-
havior of complex scalar functions or vector fields, ranging
from electromagnetic fields to director fields in liquid crystals,
spins in magnets, and complex order parameters in superfluids
and superconductors. Topological defects in those functions
or fields represent important features of the underlying phys-
ical system: Examples are (zero-dimensional) point defects
or monopoles, (one-dimensional) defect lines or strings, and
(two-dimensional) domain walls. Here we concentrate on de-
fect lines, which in the case of a complex scalar field are de-
fined by one-dimensional manifolds, where the phase of the
complex function is undefined. These topological singulari-
ties or defects are typically associated with circulations in the
phase gradient and are referred to simply as vortices. Sub-
stantial work has been invested in studying the dynamics of
vortices in different contexts, such as crossing and reconnec-
tion and the formation of knots in superfluid vortices [1, 2], in
light waves [3], and in fluid flows [4], as well as their evolu-
tion in more mathematically generalized contexts [5].

In type-II superconductors, an externally applied magnetic
field penetrates the system above the first critical field in the
form of flux tubes (vortices), which carry integer numbers of
flux quanta (typically one flux quantum). The magnetic flux in
the vortex core is screened by a circular supercurrent around
it. In the dissipative regions, vortices are dynamic objects that
nucleate and annihilate; they can cut each other and recon-
nect. In static situations, vortices can be pinned by material
defects inside the superconductor. The behavior of vortices
carrying magnetic flux determines the material’s ability to sus-
tain the dissipationless/superconducting state. When vortices
move, the system becomes dissipative, and a finite voltage

⇤ corresponding author E-mail address: cphillips@anl.gov

drop across the system is observed. In the Ginzburg-Landau
theory of superconductivity, the local superconducting prop-
erties of the material are described by a spatially dependent
complex order parameter y , and vortices correspond to topo-
logical phase singularities of y accompanied by a suppres-
sion of its magnitude. Using the time-dependent Ginzburg-
Landau (TDGL) equations, coupled partial differential equa-
tions evolving the scalar y field in time, one can find steady-
state solutions of the superconductor in the presence of exter-
nal magnetic fields and applied currents.

Simulations to model superconductors via the TDGL equa-
tions are numerically intensive. Until recently, this method
usually has been limited to 2D simulation [6–9] or small 3D
simulation [10]. Now work has been initiated, however, to
implement large 3D simulations where macroscale phenom-
ena can be observed [11, 12] taking into account the collec-
tive dynamics of many vortices. Reaching the macroscale in
these large 3D simulations requires both a stable numerical
discretization of the TDGL equations [11] and the use of ad-
vanced computing resources. It also requires the codesign of
analysis techniques that can scale with the application. For
large and long simulations, recording the state of the system
by frequently storing the entire state of the system will be un-
tenable. Fortunately, in order to support a detailed analysis of
the vortex dynamics over time, only the locations of vortices
themselves are required.

Here we introduce a data analysis method for the numer-
ical extraction of a vortex from a complex order parameter
field obtained from large-scale simulations of a type-II super-
conductor. This analysis generates vortex objects, or reduced
mathematical representations of one-dimensional curves that
correspond to individual vortices from a discretized complex
scalar field. An example of the complex and tangled vortex
state that can extracted with this method is shown in Figure
1. This analysis has applications to discretized complex fields
containing topological defects, for example, optical vortices in
electromagnetic fields as well as other problems described by

ar
X

iv
:1

50
1.

03
20

7v
1

 [c
on

d-
m

at
.su

pr
-c

on
]

13
 Ja

n
20

15

2

FIG. 1: View along the x-axis of a superconducting material simulated by using the TDGL equations. We show the material
defects, or inclusions (spheres), and the tangled vortex loops extracted by the methods described here. The magnetic field and
current along the x-axis cause the vortices to twist and writhe, and the inclusions pin the vortices in place. The vortices were

extracted from a complex scalar field discretized over a grid of 256⇥512⇥128 points.

the complex Ginzburg-Landau equations such as screw dis-
locations [13] cosmic strings [14], superfluidity, and Bose-
Einstein condensation; strings in field theory [15]; topological
defects in liquid crystals [16]; and models of fluid dynamics
with complicated nonlinear dynamics [17].

In Section II, we briefly survey prior methods for detecting
vortices in complex scalar fields. In Section III, we provide
our algorithm. We show how vortex core points are detected,
interpolated, and efficiently stitched together to form topolog-
ically ordered objects and then further compacted into mesh-
independent objects. In Section IV, we discuss the perfor-
mance and scaling of this algorithm with respect to the mesh
size or the density of the vortex state. In Section V, we pro-
vide concluding remarks.

II. BACKGROUND AND PRIOR WORK

In terms of y , a vortex line is defined as the locus of points
where |y| = 0 and where

H
—q ·ds= 2np , where q is the phase

of y . The integration is performed on a closed loop around
a vortex line, and n is a nonzero integer, usually ±1. The
sign of n indicates the chirality of the vortex with respect to
the direction of integration around the closed loop. Figure 2,
which shows the magnitude and phase of y in a yz plane slice
of a 3D field, demonstrates the correspondence between these
two measures. Two black boxes surround two vortex cores on
both the top left and right images. In the top left image, the
contour lines indicate that |y| = 0 in the center of the boxes.
For the right image, the expanded views at the bottom show
the defect in the phase field present at both locations. In both
cases the phase sums to 2p in an appropriately defined loop.

In numerical studies of type-II superconductors, the phase
information of the field is typically disregarded, and vortices
are identified by examining the contour plots of |y| in 2D
[8, 9] (or the isosurfaces of |y| in 3D [10]). Sometimes the
contour plot is supplemented by examining plots of the phase
of y [6] when unusual features, such as a giant vortex state,

are suspected. The assessment of the vortex positions in these
contour fields is qualitative but sufficient to show how vortices
self-organize in small simulations.

In large-scale 3D simulations, generating isosurfaces is not
a viable technique for understanding vortex behavior. First,
qualitative assessments of how the vortices self-organize fails
for large 3D data sets with densely packed entangled vortices.
Second, storing data to visualize a contour or isosurface does
not significantly reduce the size of the data in a time step.
Third, the format of isosurfaces and contour data, especially
in dense distributions of vortices, does not easily lend itself
to tracking individual vortex dynamics over time; more pre-
cise numerical interpretations are required. Fourth, using con-
tours to find vortices fails completely when the superconduc-
tor model includes simulated material defects (shown in Fig-
ure 1) often modeled as a suppression of the magnitude of the
y field [11]. With an isosurface method, the location of a vor-
tex core inside an inclusion cannot be visualized because the
magnitude of the field around the vortex is suppressed inside
the inclusion.

Here we introduce a data analysis method for exact numeri-
cal extraction of a vortex from a complex order parameter field
obtained from large-scale simulations of a type-II supercon-
ductor. Rather than relying on the contours of the magnitude
of the complex field, our analysis method finds the curves of
singularity points in the phase of y by integrating the phase of
y around small loops. The analysis then extracts these points
in topologically ordered sets that represent each vortex. This
method also allows direct measurement of the chirality of a
vortex, or the direction (clockwise or counterclockwise) of the
supercurrent flow around the vortex core line. This method
reduces the representation of a 3D field to a set of discrete
1D objects. Previously, parts of these techniques have been
applied to trace vortices in small-scale 3D type-II supercon-
ductor data [18, 19] and to find optical vortices in experimen-
tally measured electromagnetic fields [20, 21]. However, the
target and scale of our application, the techniques for unwrap-
ping the phase locally, the interpolation to more precisely de-

3

FIG. 2: (top left) The contour plot of
a slice of the magnitude of a complex
field. (top right) The plot of the phase
of y for a slice of the complex field.

A black box is drawn around two
vortex cores in both slices. (bottom

left) For the vortex core in the middle
of slice, integrating the phase around
the box shows a phase jump. (bottom

right) For the vortex core at the
bottom of the slice, integrating the

phase around a box of the same size
will produce errors because the phase
oscillates four times along the top and
bottom edge of the box. The region of

the slice where the phase lines
become crowded is arbitrarily

determined. By applying a gauge
transformation at each point, locally
the data can be transformed to have
the lowest possible density of phase

lines anywhere in the slice.

scribe the vortex object, the method for rapidly constructing a
vortex object from a subgraph, the introduction of a compact
and mesh-independent representation, and the general consid-
eration of the computational efficiency of the extraction are
unique to our work.

III. METHOD

The source of our data set is a TDGL model implemented
on a structured finite-difference discretization mesh with a
uniform grid spacing oriented along the x,y,z axes of the space.
We refer to this as a regular Cartesian mesh.

ALGORITHM 1: Vortex Feature Detection

1: Test each mesh element face to see if it is punctured by vortex.
(III A)

2: If desired, for all punctured faces, interpolate the location of the
puncture point. Otherwise treat as the center of the face. (III B)

3: For each punctured face, add nodes and edges to subgraph.
(III C)

4: Trace each vortex through the constructed subgraph to segment
and order the set of vortex points into separate vortex structures.
(III D)

5: Fit curves through the ordered sets of vortex points. (III E)

Our algorithm, as described in Algorithm 1, extracts vor-

tices from the data by performing closed loop integrations of
the phase around every mesh element face. The integration
is discretized over the four edges of the mesh face, using the
values at the four corners. In Figure 2, one can immediately
see an issue with this scheme. While even a large loop around
the vortex core on the bottom left unambiguously encircles a
defect in the phase field and the phase increments will sum
to 2p , only a very small loop, perhaps even smaller than the
resolution of the mesh, can be used on the bottom right. Oth-
erwise, the phase changes by more than p along individual
segments, and using only the value at segment endpoints will
result in error. In Section III A, we show how this problem is
corrected by applying a gauge transformation along the path
of integration.

If a vortex passes through a mesh element face, we say it
“punctures” the face, and the exact point it penetrates the face
is the “puncture point.” When a mesh face is found to be punc-
tured, an interpolation can be applied, based on the values of
y at the grid points of the mesh, to determine where inside the
face |y| = 0, or the unique location where the vortex punctures
the face. In Section III B, we provide a generalized technique
for finding the puncture point inside a generalized mesh ele-
ment face.

In order to facilitate the topological reconstruction of each
vortex, the information determined in Step 1 is used to con-
struct a graph, described in Section III C. In Section III D, we
show how this graph, which is a subgraph of the mesh, can be

4

rapidly traversed to reconstruct each vortex core line, as well
as used to identify rare points of contact between vortices. In
Section III E, we show how the representation of the vortex
core line can be made compact and mesh independent.

A. Finding Punctured Faces

FIG. 3: Illustration of a vortex line weaving through four
mesh elements. Blue balls represent grid points where the

value of y is known. The bullseyes indicate the four puncture
points. Of the two integrals along closed paths illustrated,

one has a value of zero and one has as a value of one.

Given a set of complex values y that have been calculated
on each point of a mesh, vortex lines can be localized by cal-
culating the integral

n =� 1
2p

I
—q ·dl (1)

around closed paths in the mesh. When the value of n is a
nonzero integer (usually ±1), then the path encircles a vortex
line, and the sign of n indicates the chirality of the vortex with
respect to the face normal. The smallest closed path that can
be calculated is a noncolinear triangle of points, such as half
a mesh element face. For simplicity, however, we perform
closed paths integrals around the perimeters of the rectangular
mesh faces. The closed path integral is broken up into a sum
of line integrals calculated over each line segment of the path.
An illustration for mesh elements is provided in Figure 3, or

n ⌘� 1
2p

m

Â
1

Dq

i,i�1, (2)

where

Dq

i,i�1 = mod(q
i

�q

i�1 +p,2p)�p (3)

and m is the number of segments defining the path around the
face.

The value of the phase of y at each grid point is stored in an
n

z

⇥n

y

⇥n

x

3D array Q, where n

i

is the number of grid points
along the ith axis. In order to calculate the phase differences
in the x, y, or z direction, a copy of Q is rolled in the axial
direction, that is, circularly shifted one index position, sub-
tracted from Q, and the 2p modulo is taken of the resultant
multidimensional array. We use the notation Q1,0,0, Q0,1,0,
and Q0,0,1 to represent the Q matrix rolled in the positive x, y,
and z direction, respectively.

FIG. 4: One mesh element in the grid.

For example, Figure 4 shows an annotated illustration of a
single mesh element. We let D1�2 equal the 2p modulo of
Q1,0,0 �Q. Likewise, D4�1 = Q�Q0,1,0. Therefore D3�4 and
D2�3 are constructed by applying a circular shift to D1�2 and
D4�1, respectively, in the y and x axis, respectively. The sum
of these four arrays, n

xy

, is a 3D array containing the integra-
tion of the phase, or a calculation of Equation (2), around the
perimeter of every mesh element face in the xy plane.

In the remainder of this section we explain two correc-
tions that make the calculation valid over the entire simulation
space.

This integration calculation, broken over the four segments
of the mesh element face, is an acceptable calculation of the
contour integral as long as the phase of y does not change by
more than ±p along any line segment. In a TDGL simula-
tion, however, the gradient of the phase of y depends on the
vector potential A and the applied current. In Figure 2, for
example, the box drawn around the vortex core at the bottom
of the plot has many wrappings of the phase along the top and
bottom edges of the box, meaning the phase changed by p

several times along the segment. If the contour integral was
performed around an arbitrarily small path around the vortex,
or if the value of y could be sampled at arbitrarily small line
segment intervals along the contour, the calculation would be
correct. However, the resolution of our calculation is deter-
mined by the resolution of the structured mesh. Nonetheless,
the value of y can be locally transformed to make the cal-
culation valid again. The phase of the order parameter in
the TDGL model is not uniquely defined; it depends on the
choice of the gauge for the vector potential. This choice of
gauge determines where in the plot of the phase of y of Fig-
ure 2 the phase lines are dense (the top and bottom) and where
they are not (the middle). By applying gauge transformations

5

along the contour integral, which changes the vector potential
such that high-frequency oscillations of the phase of y are
removed locally, a unique vortex detection and highest pre-
cision interpolation are possible. In Appendix A, we derive a
gauge-invariant contour integral. The result of this calculation
is a set of multidimensional arrays that are added to the phase
difference multidimensional arrays.

In order to perform the integration loop correctly at the
boundaries of the simulation data, the correct boundary condi-
tions need to be applied. Three types of boundary conditions
are possible in a TDGL simulation. The first is the open or
“no current” boundary condition; in this case, nothing needs
to be done. The second and third types are “periodic” and
“quasiperiodic,” respectively. In both these cases, the end
faces of the mesh are connected to each other. The mesh in-
cludes an extra slab of mesh element that straddles the two
end faces. If the boundary condition is periodic, the calcula-
tion performed on this extra slab is no different from anywhere
else. Depending on the choice of vector potential, the periodic
boundary conditions in one direction must be replaced by a
“quasiperiodic” boundary condition. In this case, the magni-
tude of the order parameter is still periodic, but its phase shifts
across the boundary. The integration around a mesh element
face straddling a quasiperiodic boundary requires a correction
term for this phase shift where the boundary is crossed. In
Appendix B, the calculation for the quasiperiodic boundary
condition correction is provided. The result of this calculation
is a two-dimensional array that is added to a two-dimensional
slice of the phase difference array when applicable.

We have shown how all the contour integrals around all the
mesh faces can be described by a series of circular shifts, ad-
ditions and subtractions for the regular data pattern of a struc-
tured mesh. In practice, in order to keep the memory foot-
print of the problem small, the operations can be performed on
slices of the 3D array. The regular and local nature of these
calculations can be optimized in various ways to maximize
data reuse, memory, and parallelism of a given computational
algorithm.

B. Interpolating within a Mesh Element Face

Given a punctured face, a more precise prediction of the
puncture point can be determined by interpolating from the
values of y on the four grid points of the face. Here we use
the other definition of a vortex core point, a point where |y|=
0, or both the real and imaginary component of y are zero.
Given the four y values, we predict where in the interior of
the face y = 0. This is significantly more computationally
expensive than calculating the contour integral around a face,
and thus it is not generally used as the test to predict whether
a face is punctured.

In Appendix C, three methods are provided for interpolat-
ing the puncture point: triangulation, inverse bilinear interpo-
lation, and inverse barycentric interpolation. In Figure 5, the
precision error inherent in these three methods is shown for
both a dense and a sparse configuration of 2D vortices. The
mean error in predicting the position of the vortex core point

is compared with the length of the side of a mesh element
(both in units of x0, the zero temperature coherence length,
the physical length unit used in simulation). The three meth-
ods are compared with assuming that the vortex core center is
at the center of the punctured face (None). The grids in the
top of Figure 5 correspond to the coarsest edge length of 3.9.
For this data, triangulation is slightly superior to inverse bi-
linear interpolation and inverse barycenteric interpolation, but
all perform similarly. At the standard edge length chosen in
simulation, 0.5, all three have an error that is less than 1% of
the edge length.

Applying the gauge transformation not only makes the con-
tour integral numerically valid in dense vortex systems but
also significantly improves the prediction of the position of the
vortex core point. The impact of not applying the gauge trans-
formation (and interpolating with the triangulation method)
is shown in both plots. Data is shown only over the range
where the correct number of vortices was identified. In the
dense configuration, this method performs worse than using
the gauge transformation with no interpolation, because vor-
tices are sometimes not found in the correct grid cell. In the
sparse configuration, we see that although the gauge trans-
formation is not necessary to find punctured element faces
for sufficiently small mesh elements, not applying the gauge
transformation to the data adds significant error to the inter-
polation.

C. Constructing a Graph Structure

The 4D array n for each planar contour integral contains
only 0, 1, or -1, where the nonzero elements of n corresponds
to the punctured mesh element faces. The sign of the nonzero
element corresponds to the chirality of the vortex relative to
normal axis of the face it is puncturing.

In reference [22], the set of puncture points associated with
the nonzero faces in n

xy

, n

xz

, and n

yz

were compacted into
a list and then topologically sorted by Euclidean distance to
partition them into separate vortex objects. Optimally im-
plemented, this algorithm has a computational complexity of
O(Nlog(N)), where N is the number of points. However, us-
ing a Euclidean distance criterion to sort points can produce
incorrect results. In theory, two vortices that do not punc-
ture the same mesh elements can have points arbitrarily close
together. Also, this method does not extend well to meshes
where mesh elements are not uniformly sized cubes. For het-
erogeneous and irregular meshes, no simple distance criterion
will work. Instead, we propose a scheme that retains the con-
nectivity information of the puncture points that is implicit
in the mesh structure, allows fast reconstruction of the vortex
objects, and is of computational complexity O(N).

One way to interpret the structure of a mesh is as a graph,
where mesh elements are nodes and mesh faces are edges con-
necting two mesh elements. We assume that given a mesh
element, there is a fixed way to order its faces and that the
identity of each mesh element neighboring the original ele-
ment via each face is accessible via an O(1) calculation, ei-
ther because of the regular structure of the mesh or through

6

FIG. 5: The precision of different interpolation methods for a dense (left) and sparse (right) vortex core distributions in a 2D
plane. For comparison, the result of the interpolation if the gauge transformation is not applied to the data (only shown over the
range where the correct number of vortices was detected) is also included. All units are coherence length, or the length unit of

the simulation. Inset in each plot is an example 1/16th of the 2D plane for each case, showing ten and five vortex cores,
respectively.

a precalculated look-up table. The mesh elements and mesh
faces punctured by a set of vortices are then a subgraph of
this graph. The nodes of the subgraph are punctured mesh el-
ements. The edges of the subgraph are the shared punctured
faces of neighboring mesh elements. This is illustrated in 2D
on the left in Figure 6. Both constructing the subgraph and
connecting the core points by tracing paths through the graph
are O(N) calculations, where N is the number of core points,
that is, punctured faces.

The subgraph structure can be constructed simultaneously
with finding core points by adding an edge each time a punc-
tured face is found. Since the fraction of mesh elements that
are punctured is very small even in a dense configuration of
vortices, we choose to use a dictionary, or hash table, to store
the nodes and edges. On average, inserting, retrieving, and
deleting a key-value from a hash table are O(1). The key is an
integer that uniquely identifies a mesh element, or the node.
The value is a binary string representing the punctured faces
of the element, or the edges of the node. The chirality of each
vortex face puncturing is also stored in a second binary string.
Thus for each nonzero element of n, two nodes, the two mesh
elements that share the punctured face, are added to the dic-
tionary (if not already present), and an edge is added connect-
ing the nodes. The interpolated vortex center coordinates are
stored in a separate dictionary by using a key that uniquely
represents the face.

For a mesh with hexahedral elements, each node can have
edges to only six other nodes, so the edges can be represented
as a 6-bit string. In a regular Cartesian mesh, no look-up table
between elements and connecting faces is required, because
of the simple structure of the mesh. As shown in Figure 6
on the right, the key for each punctured mesh element is its
unique coordinate position in integer index space. The value
stored for each key is a 12-bit string, where bits 0-5 are set if

faces A-F are punctured, and bits 6-11 indicate the chirality of
the vortex puncture. For the chirality bits, a bit has meaning
only if the associated face bit is set. A value of 0 indicates the
more common positive chirality, while a value of 1 indicates
a negative chirality [23].

This algorithm can be trivially extended to an unstructured
mesh, albeit dependent on the availability of a look-up table
for determining what face connects which elements. Neighbor
element lookup is commonly supported in meshing libraries,
such as libmesh [24].

FIG. 6: Left: Illustrated in 2D, a mesh can be interpreted as a
graph structure. The path of a vortex (green) puncturing the
mesh can be represented as a subgraph of this graph. Right:
For each punctured mesh element, the subgraph dictionary
stores a 12-bit number (i.e., a node) that indicates which

faces were punctured (i.e., the edges) and the chirality of the
vortex puncturing the face. In this example, faces A and C

were punctured; the vortex has a negative chirality relative to
face A and a positive chirality relative to face C.

7

D. Tracing Each Vortex to Extract the Topological Structure

In the subgraph, each vortex maps to a set of connected
nodes. In order to extract the topologically ordered set of
puncture points that define each vortex, a node is acquired
from the subgraph dictionary, and its edge information is used
to acquire the next node in a chosen direction. Each node is
removed from the dictionary upon acquisition. This procedure
is repeated until no more nodes are found. The procedure is
repeated for the other direction of the original node, and the
two lists of nodes are appropriately concatenated. This or-
dered list of nodes represents a complete vortex and can be
converted back into an ordered list of puncture points. If the
interpolated puncture points were stored in a dictionary, then
their key can be reconstructed from the nodes in the list, and
each face point can be replaced by the higher-precision in-
terpolated point. To find all the vortex objects, we acquire
and trace the nodes until the dictionary is empty. Using this
subgraph dictionary, we construct the set of vortex objects in
computational time linear to the number of puncture points in
the system.

If two vortices puncture the same mesh face, this cannot
be resolved. The algorithm here depends on the assumption
that mesh data is generated at a resolution that is commensu-
rate with the interaction lengths of meaningful physical pro-
cesses. However, in extremely rare cases — far less than 0.1%
of the punctured mesh elements — two vortices can be close
enough to puncture the same mesh element but not the same
face. Even though technically the two vortices may not be
connected, for the purpose of analysis they are treated as a
single vortex object. If during the trace a node with connec-
tivity > 2 is found, that is, with more than two face bits set,
then new traces are initiated in each face bit direction (barring
the direction of the original trace), and the algorithm returns a
set of lists of ordered points, one for each trace direction and
one containing just the points of the high-connectivity node.

In an even rarer case, a vortex could be close enough to an
edge or corner of a mesh element such that a contour integral
interprets the vortex as penetrating zero, two, or three faces.
The likelihood of this happening is directly related to the pre-
cision of the calculation of the contour integral. In an infinite
precision calculation, this event has zero probability of occur-
ring. In a single- or double-precision calculation, the prob-
ability is still extremely low. In fact, we have not observed
this statistically unlikely event yet. Rather than adding addi-
tional expensive checks to the vortex core finding or tracing,
this case would best be detected by checking traced vortices
for anomalous properties (e.g., having an end that does not
terminate in a boundary). Note that this cannot occur because
of precision error in the interpolation, since even if a vortex
core is interpolated to be slightly outside of a face, it is still
treated as puncturing the original face.

E. Creating a Compact Mesh-Independent Vortex Object

At this stage of the algorithm, a vortex object is represented
by an ordered set of puncture points. The number of puncture

points is determined by the mesh resolution. Commonly, vor-
tices are nearly straight curves that span one dimension of the
mesh; thus, a far more compact, and even mesh-independent
representations of each vortex is possible. Here we discuss
one method for compacting the vortex representation.

If we ignore the wrapping of a vortex across periodic
boundaries, by, for example, cutting a vortex into pieces when
it wraps or creating an unwrapped vortex using periodic im-
ages of the vortex, then a vortex represented as an ordered list
of puncture points is a polyline. Polyline simplification, or
the decimation and curve fitting of a polyline to create a more
compact representation, is a well-studied problem in computer
graphics with numerous available algorithms. Here we deci-
mate our polyline using the Ramer-Douglas-Peucker (RDP)
algorithm [25, 26], and then further reduce and fit the polyline
using Schneider’s algorithm [27].

Given a polyline, RDP reduces it to a simpler polyline by
recursively dividing it until a distance criterion is met by each
segment. Schneider’s algorithm fits piecewise cubic Bezier
curves to a polyline again, by dividing the polyline until a dis-
tance criterion is met by each curve. Each piecewise cubic
Bezier curve is represented by two endpoints and two control
points. It is not strictly necessary to apply RDP to a polyline
before applying Schneider’s algorithm; however, the cost of
decimating the polyline and evaluating the distance criterion
is cheaper for RDP than for Schneider’s algorithm, and thus,
this prestep modestly improves the net time of polyline sim-
plification. While the performance of both algorithms is in
worst case O(n2), where n is the number points, on average it
is O(nlog(n)).

Both RDP and Schneider’s algorithm require an error pa-
rameter in units of distance for evaluating their distance crite-
rion. The smaller the error parameter, the truer the final piece-
wise curve will be to the original set of points, the larger the
number of piecewise curves that represent the vortex object,
and the more recursive iteration steps will be required to fit the
curves. In units of coherence length, we chose e = 0.05 and
0.01 for RDP and Schneider’s algorithm, respectively. These
parameters decimate the original polyline vortex by approxi-
mately a factor of 10 and then 3, when performed in series.
The final representation of the vortex object is mesh inde-
pendent because, presuming the original mesh was detailed
enough to capture the features of the vortex, then using finer
meshes should not significantly change the final compact rep-
resentation of the vortex.

IV. PEFORMANCE

A prototype version of the vortex-finding algorithm de-
scribed above was implemented in Python using the numpy

library and serially on a single thread. All benchmarks shown
were performed on an Intel Core i7, 2.3 GHz with 4 cores and
16 GB of RAM.

For a benchmark testing of the analysis code, we created
a 512 MB 256x512x512 data set with a dense distribution of
vortices that is periodic in the x-direction. The data set con-
tains 305 vortices. However, each vortex wraps through the

8

FIG. 7: Three vortices, two pinned on inclusions, are shown.
Black dots are puncture points. Red curves represent the

piecewise cubic Bezier curves fit through the puncture points.
The details of how each vortex flexes as it traverses an

inclusion are apparent.

periodic x-boundary four times on average. If we count each
time a vortex wraps through the box individually, the data set
contains 1,297 vortices (Figure 8). The total amount of time
to extract all the vortices is between two and three minutes,
depending on the interpolation method used.

Table I lists the timings of the major steps of the algorithm.
Because of the dense vortex state of this data set, performing
the interpolation and fitting the cubic Bezier curves require
the largest fraction of time, nearly three-quarters of the cal-
culation time. Strictly speaking, both interpolating and curve
fitting are optional. Without them, a less smooth vortex object
composed of ordered points is still constructed by the anal-
ysis. We provide the timings for four different versions of
interpolation (each discussed in more detail in Appendix C).
The timing difference among the methods varies by less than
a factor of 2. The triangulation method is the most computa-
tionally efficient. If we assume, however, that we are perform-
ing triangulation in a rectangle arbitrarily oriented in space,
a more general case, then the efficiency drops significantly.
The inverse barycentric interpolation, which makes no orien-
tation assumptions, is nearly as efficient as triangulation. The
inverse bilinear interpolation is the most computationally ex-
pensive. Generating and tracing the graph to construct topo-
logically ordered vortex structures require only 8% of the total
calculation time. Unaccounted-for time is primarily I/O oper-
ations.

This algorithm has two important scaling dimensions: scal-
ing with increasing data (larger grid size) and scaling with in-
creasing vortices. To separate how the algorithm scales inde-
pendently with respect to these two dimensions, we consider
two tests. In the first, Section IV A, we keep the number of
vortices fixed while increasing the grid size. In the second,
Section IV B, we keep the grid size fixed while increasing the
number of vortices present.

FIG. 8: Benchmark data set of 256x512x512 grid points and
1,297 vortices

TABLE I: Timing of algorithm for 256x512x512 grid points
and 1,297 vortices

Algorithm Step Time (sec)
Find Punctured Faces 23.2
Interpolation - Triangulation 31.2
Interpolation - Barycentric 36.3
Interpolation - Generalized Triangulation 51.0
Interpolation - Bilinear 52.1
Generate Subgraph and Trace Vortices 10.8
Fit Cubic Bezier Curves 62.0
Total (with Triangulation) 131.2

A. Scaling with Grid Size

In Figure 9, we show how the algorithm scales with increas-
ing data set size. Grid point sizes of 643,963,1283,1603, and
1923 were tested. Over all these data sets, the number of vor-
tices was kept constant at two, while the data set size was in-
creased. In this dilute vortex state, with a small, fixed number
of features to find, the bulk of the algorithm time is perform-
ing the matrix calculation. Both calculations scale linearly
with the number of grid points. Thus the total time also scales
linearly with the number of grid points, when the number of
features is kept constant and is small.

FIG. 9: Calculation time as a function of increasing the
number of grid points in the data set.

9

B. Scaling with Number of Vortices

The performance of steps 1-4 of the topological extraction
method described above does not depend on the topology of
vortices. These steps are invariant to factors such as the direc-
tion or the tortuous path of a vortex. They do, however, de-
pend on the net vortex length in the data. The fifth step of the
algorithm, in contrast, does depend on the topology of the vor-
tices; this determines the number of recursion iteration steps
required to fit the vortex. However, here we focus primarily
on the scaling of the algorithms relative to net vortex length.
In Figure 10, the size of the mesh (128x128x128) was kept
fixed while increasing the number of vortices present. The tri-
angulation interpolation method was used. As can be seen, the
matrix calculation is invariant to the increase in the number of
features. However, the time to trace the vortex structures, the
time to calculate the interpolations, and the time to fit Bezier
curves increase linearly with the net length of the vortices,
measured in puncture points. Fitting cubic Bezier curves and
generating the higher-precision vortex structure by interpolat-
ing the puncture points on the punctured faces constitute the
bulk of the computational time for the data set of a dense vor-
tex state. Since, over this data, the vortex length is being in-
creased by adding vortices of approximately constant length
in puncture points, not by adding puncture points to each vor-
tex, the computational cost of fitting a cubic Bezier curve is
linear to the number of vortices in the system, and therefore
to the number of puncture points. The computational cost of
interpolation is always linearly proportional to the number of
puncture points. The choice of interpolation method deter-
mines only the coefficient of the linear dependence. Thus the
four interpolation timings of Table I should accurately predict
how using different interpolations methods will scale the in-
terpolation time.

FIG. 10: Scaling of parts of the algorithm as the vortex
length increases for a fixed number of grid points.

In general, as the data set size increases, if the planar den-
sity of vortices stays constant, the apparent length (measured
in mesh elements) of all the vortices will grow in proportion
to the total number of grid points. Therefore, as simulations
approach the macroscale, the calculation of the matrix and the
tracing/interpolating of the vortex points will stay in roughly

the same balance to each other, with the matrix calculation
dominating in sparse vortex states and the interpolation cal-
culation dominating in dense vortex states. The cost of fitting
piecewise cubic Bezier curves, however, will grow and may
dominate the calculation. Both curve fitting and the interpo-
lation of puncture points are optional. Many analyses, such
as tracking and event detection, do not require the extra preci-
sion in the determination of the puncture point. Additionally
the choice to fit curves to the points depends on whether fur-
ther data compaction or data smoothing is desirable relative to
the additional computational cost.

C. Memory Usage

In general, the minimal set of data structures to support this
algorithm — that is, the dictionary of interpolated points, the
dictionary that holds the subgraph, and the final set of vor-
tex objects — scale with the number of puncture points, N

p

.
In turn, the number of puncture points is proportional to the
number of vortices N

v

in the data and to the discretization of a
single edge n

x

, that is N

p

µ N

v

⇤n

x

. Thus the additional mem-
ory footprint of this algorithm above the original mesh data
depends primarily on the density of vortices in the system but
is moderate in size compared with the size of the mesh data,
which is proportional to n

3
x

. As a rule, even for very dense
vortex states, the additional memory requirements to support
the data structures to generate the vortex objects are far less
than 10% of memory requirements for the original mesh data.
The final representation of vortices generally is less than 0.1%
of the original mesh data.

In calculating the contour integrals, we can choose to pre-
calculate certain arrays, for example, slices of the gauge trans-
formation array that are used many times for computational
efficiency. In general, the precalculated arrays add more mem-
ory pressure than the data structures hold vortex objects. De-
termining the best tradeoff between precalculating certain ar-
rays versus recalculating values on the fly can be adapted as
needed.

V. CONCLUSION

In this paper, we have presented a method that can exactly
extract the topological defect lines from a data set of complex
scalars defined over a mesh. In our application, the topolog-
ical defects correspond to vortex lines in a TDGL simulation
of a type-II superconductor. Compared with prior methods,
which generate isosurfaces, our method provides reliable sub-
grid resolution of vortex positions even when the vortices are
densely packed. The centers of vortices are detected by using
the phase rather than magnitude of the complex scalar field.
Integrals are performed along gauge-transformed closed paths
to find individual points along the core of a vortex. The real
and imaginary parts of the field are then used to interpolate
higher precision points. The points are topologically ordered
along a single vortex line by the construction and tracing of
a subgraph generated from the underlying the mesh geome-

10

try. Each vortex is then transformed to a compact and mesh-
independent representation by fitting a piecewise cubic Bezier
curve through the points. The number of fitted curves is de-
pendent on the tortuosity of the vortex, rather than the mesh
resolution. While implemented here on a regular structured
mesh that is aligned along the Cartesian axes, this method can
be easily generalized to an unstructured mesh composed of
arbitrarily oriented polygonal faces.

This analysis permits details of vortex interactions to be un-
derstood at a finer detail than was previously possible. (1)
It allows vortices that are very close together to be disam-
biguated and the details of their interaction revealed. In ref-
erence [28], this method was used to examine the before and
after of two reconnecting vortices, revealing how the vortices
mutually bent into an antiparallel configuration before swap-
ping parts and rapidly repelling each other. (2) It allows vor-
tices to be visualized inside the interior of pinning defects
modeled as suppressions of the y parameter. (3) It provides a
reduced representation of individual vortices from which ge-
ometrical properties such as length, curvature, and angle of
pinning defect penetration can be unambiguously measured.
(4) It provides the basis for tracking vortices over simula-
tions, measuring their flow velocity and detecting reconnec-
tions and pinning events. Thus, the macroscopic behavior of
the vortices can be related to the measured properties of the
simulation. (5) Additionally, this provides a greatly reduced
representation of the vortex state of a superconductor to be
stored, compared with storing the entire state of y . As TDGL
simulations increase in size so as to model experimentally rel-
evant mesoscale superconducting phenomena, it will be criti-
cal to be able to store and visualize reduced representations of
the data, or the generation and storing of simulation data will
quickly overwhelm computational effort.

ACKNOWLEDGMENTS

We thank Alexei Koshlev and Hanqi Guo for useful dis-
cussions and thank H.G. for the method of efficiently solving
the inverse bilinear interpolation. We thank Sylvain Peyrefitte
and Volker Poplawski for providing python implementations
of the Ramer-Douglas-Peucker algorithm and Schneider
algorithm, respectively. This material was based upon work
supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research,
Scientific Discovery through Advanced Computing (SciDAC)
program and the Materials Sciences and Engineering Divi-
sion. C.L.P. was funded by the Office of the Director through
the Named Postdoctoral Fellowship Program (Aneesur Rah-
man Postdoctoral Fellowship), Argonne National Laboratory.

Appendix A - Gauge-Invariant Vortex Detection
The total vorticity for y = |y|eıq is defined as

2pn ⌘�
I

C
dl ·—q , (4)

along a closed contour C with C = ∂A (A being the area
enclosed by contour C).

However, whereas the magnitude of y is gauge invariant,
the phase of y is not. In order to calculate the above line inte-
gral in a gauge-invariant manner, let us look at the expression

j
s

⌘ J
s

/|y|2 .

The supercurrent J
s

is well defined and gauge invariant:

j
s

=
1

2ı|y|2 (y
⇤—y �y—y

⇤)�A = —q �A ,

and thereforeI
C

dl ·—q =
I

C
dl · (j

s

+A) =
I

C
dl · j

s

+
I

C
dl ·A. (5)

The right-hand term then becomes F=
H
C dl ·A=

R
—⇥A ·

da =
R

B ·da, or the total magnetic flux normal to the contour
area. So, now

2pn =�
I

C
dl · j

s

�
Z

B ·da , (6)

or the summation of two gauge-invariant integrals.
We use the expression

j
s

=
1

|ỹ|2 Im[ỹ⇤(—� ıA)ỹ],

where ỹ = ye

ıKx. The phase factor, e

ıKx, which makes ỹ a
quasiperiodic function, is included in reference [11] so that the
scalar potential µ does not have a discontinuity at the periodic
boundary when a current is applied in the x-direction. The
value of K, which is time-varying but spatially invariant, is nu-
merically calculated by the simulation and a provided quantity
for this calculation. We obtain

j
s

=
1
|y| Im[e�ı(q+Kx)(—� ıA)|y|eı(q+Kx)] . (7)

Expanding this expresion, we write j
s

=

Im
h
e

�ı(q+Kx)—e

ı(q+Kx)� ıA
i

= �A + Kx̂ + —q , and
thus

2pn =�
I

C
dl · (—q +Kx̂�A)�

Z
B ·da. (8)

Another way to understand the derivation of this expression
is to say that, since q is dependent on the gauge, we choose
a gauge and subsequent value of q along the contour to be
the value where the non-current-induced part of the vector po-
tential is zero. The following is the expression for the gauge
transformation for a Ginzburg-Landau system in the large l

limit.

Ã(r) = A(r)+Kx̂�—c (9)
µ̃(r) = µ(r)� x∂

t

K (10)

ỹ(r) = y(r)e

ıKx�ıc . (11)

Per Eq.(11), the transformation to q is

q̃ = q +Kx�c (12)

11

and

—q̃ = —q +Kx̂�—c (13)

If expression (13) is substituted into Eq.(4), then an addi-
tional term is required to restore Eq.(4) to gauge invariance.
(Note that integrating Kx̂ around a closed loop is always zero.)

2pn ⌘�
I

C
dl · [—q +Kx̂�—c]�

I
C

dl ·—c (14)

We chose the gauge along the contour C , to be —c = A(r).
The final expression,

2pn ⌘�
I

C
dl · [—q +Kx̂�A(l)]�

Z
B ·da, (15)

always calculates the change in q around the contour with
zero additional phase due to the choice of gauge. This allows
larger contours to be used without the calculation becoming
invalid. This also supports the minimal error in the interpola-
tion of the puncture point.

The value of Eq.(15) can be exactly calculated over a set
of connected segments {l

i

} forming a closed path, where q is
q

i�1 and q

i

at the endpoints of segment l

i

, as long as q̃ does
not change by more than p along any one segment, namely,

2pn ⌘�
m

Â
1

Dq̃

i,i�1 �
Z

B ·da, (16)

where

Dq̃

i,i�1 = mod(q
i

�q

i�1 +(Kx̂�A(l)) · l
i

+p,2p)�p. (17)

The modulo operation above, which maps Dq̃

i,i�1 into the
range [�p,p], is necessary because the difference between
two angles has a countably infinite number of values. As long
as q̃ has not changed by more than p , then the smallest value
in magnitude is the correct one. This is also why this is a
condition for the correctness of the entire calculation.

In the large l -limit Ginzburg-Landau solver described in
reference [11], the vector potential was defined as a linear
function either in the x and z direction or in the y and z direc-
tion. If the summation of Eq.(16) is calculated as a four-point
calculation around the edges of mesh element faces of a reg-
ular Cartesian mesh, then the set of all local transformations
can be represented as two or three multidimensional arrays
that hold the values of

R
dl · [Kx̂�A(l)] for dl = dx,dy, or, dz

for all the mesh element edges of the mesh.
For an xz magnetic field and correspondingly defined vec-

tor potential, the first multidimensional array is the set of z-
direction transformations, where each element is defined as

G

z

(i, j,k) =�B

x

ȳ(j)h
z

, (18)

and the second multidimensional array is the set of x-direction
transformations, where each element is defined as

G

x

(i, j,k) = B

z

ȳ(j)h
x

+Kh

x

, (19)

where ȳ(j) = h

y

(j � n

y

2) if the y-direction is periodic and
ȳ(j) = h

y

(j � n

y

�1
2) if it is not. The variables h

x

, h

y

and h

z

are the edge lengths of the mesh elements. There is no trans-
formation along the y-direction edge.

We can also calculate the value of
R

dl · [Kx̂�A(l)] along
an arbitrary vector as

g(r1,r2) =DxK +Dx

✓
ȳ(j1)+ ȳ(j2)

2

◆
B

z

(20)

�Dz

✓
ȳ(j1)+ ȳ(j2)

2

◆
B

x

,

where r2 � r1 = (Dx,Dy,Dz) and r1 and r2 have j indices of
j1 and j2, respectively. Using this form, we can create arbi-
trary polygonal contour paths in the mesh for calculating the
vorticity.

For an yz magnetic field and correspondingly defined vec-
tor potential, the first multidimensional array is the set of z-
direction transformations, where each element is defined as

G

z

(i, j,k) = B

y

x̄(i)h
z

, (21)

and the second multidimensional array is the set of y-direction
transformations, where each element is defined as,

G

y

(i, j,k) =�B

z

x̄(i)h
y

, (22)

and the final multidimensional array is the constant x-direction
transformation

G

x

(i, j,k) = Kh

x

, (23)

where x̄(i) = h

x

(i� n

x

2) if the x-direction is periodic and x̄(i) =

h

x

(j� n

x

�1
2) if it is not.

Again, we can calculate the value of
R

dl · [Kx̂�A(l)] along
an arbitrary vector as

g(r1,r2) =DxK �Dy

✓
x̄(i1)+ x̄(i2)

2

◆
B

z

(24)

+Dz

✓
x̄(i1)+ x̄(i2)

2

◆
B

y

,

where r1 and r2 have i indices of i1 and i2, respectively.

Appendix B - Quasiperiodic Boundary conditions
For the xz plane homogeneous magnetic field, the y-

direction (if specified periodic) is quasiperiodic. This means
there is a phase shift in y across the y boundary, whose mag-
nitude is dependent on the x and z coordinates. Hence, the fol-
lowing correction needs to be added to the calculation of Dq̃

for any segment that straddles the quasiperiodic boundary:

QP

y

(x,z) =�L

y

B

z

x+L

y

B

x

z, (25)

where x and z are the coordinates where the quasiperiodic
boundary is crossed in a positive y-direction. For the y-
directed edges of a Cartesian mesh, x = h

x

i and z = h

z

k.
Similarly, for the yz plane homogeneous magnetic field,

the x-direction (if specified periodic) is quasiperiodic, and the

12

analogous correction for any x-direction edge that straddles
the periodic boundary is

QP

x

(y,z) = L

x

B

z

y�L

x

B

y

z. (26)

Appendix C - Interpolation
Here we review multiple ways that the center of a vortex

core can be interpolated from the value of y at three or four
points. These methods use the set of values of y defined at
points along a contour to predict where inside the area en-
closed by the contour |y|= 0, or both the real and imaginary
parts of y are zero.

Note that in order to get accurate and consistent results with
contour integral calculation, one value of y should be selected
as a reference point, and the subsequent values of y should
have their phases corrected in the same manner as in the con-
tour integral calculation. For example, if the reference point
is y0 = |y0|eıq0 , and next point is y1 = |y1|eıq1 and if the
gauge-invariant phase difference calculated between the ref-
erence point and the next point is Dq̃ , then the value used for
the next point should be y

0
1 = |y1|eıq0+Dq̃ .

a) Triangulation Given a set of three or more points that
describes a polygonal contour path, each segment can be ex-
amined to see whether it contains a zero in either the real or
imaginary part of y , based on a linear interpolation along each
segment. If exactly two zero-points are found for the real and
imaginary components, respectively, then the intersection be-
tween the pair of lines connecting the two pairs of points pre-
dicts the location of the puncture point. If more or fewer than
two zero-points are found for the real or imaginary compo-
nents, then the sign changes around the points needs to be ex-
amined more closely to determine how to connect the points
with lines, or a different interpolation method should be used.

If the polygonal path is arbitrarily oriented in space such
that the two lines are in a 3D space and not projected to
a known plane, then the floating-point representation of the
lines will be sufficient to prevent the two lines from properly
intersecting. The intersection should be determined numeri-
cally in a least-squares sense; we refer to this as a generalized
triangulation.

b) Inverse Bilinear Interpolation
A bilinear interpolation allows the value of a function at

a point to be interpolated from the value of the function at
four coplanar (but not collinear) points. Thus, the point where
Re(y) = 0 and Im(y) = 0 can be solved by inverting the bi-
linear interpolation. Assuming the calculation is performed in
unit square coordinate system, then we seek (x,y) such that

b1 +b2x+b3y+b4xy = 0 (27)
c1 + c2x+ c3y+ c4xy = 0, (28)

where b1 = Re(y(0,0)), b2 = Re(y(1,0)�Re(y(0,0), b3 =
Re(y(0,1)�Re(y(0,0), and b4 = Re(y(0,0)�Re(y(1,0)�
Re(y(0,1)+Re(y(1,1). The c coefficients are similarly de-

fined for the imaginary part of y . Since a bilinear interpola-
tion is a quadratic function, it is not, generally speaking, in-
vertible. However, the problem can be reformatted as finding
the solution to a generalized eigenvector problem.

Av = lBv, (29)

where y = l ,

v =

x

1

!
, (30)

A =�

b2 b1
c2 c1

!
, (31)

and

B =

b4 b3
c4 c3

!
. (32)

By determining the eigenvalues and associated eigenvectors
of this equation, and choosing the (x,y) pair both inside the
bounds [0,1], the puncture point can be found.

d) Inverse Barycentric Interpolation
To calculate the puncture point r in a triangle arbitrarily

oriented in space, we represent the point in barycentric coor-
dinates in a 3D simplex, (l1,l2,l3,0). The final coordinate
l4 = 0, because we are constraining our point to one triangle
of the surface of the tetrahedron. Let y1,y2,y3 represent the
value of the complex order parameter on the three grid points
of the triangle, each of which has coordinates r1,r2,r3, where
r

i

= (x
i

,y
i

,z
i

).
As |y|=0 at the puncture point, both the real and imaginary

part of y must be zero at the point. Also, by the definition of
baryocentric coordinates, l1 +l2 +l3 = 0. Hence we solve
the following equation for (l1,l2,l3).0B@Re(y1) Re(y2) Re(y3)

Im(y1) Im(y2) Im(y3)

1 1 1

1CA
0B@l1

l2

l3

1CA=

0B@0
0
1

1CA (33)

We convert the coordinates (l1,l2,l3) to r by

r = T

l1

l2

!
+ r3, (34)

where T is

T =

0B@x1 � x3 x2 � x3

y1 � y3 y2 � y3

z1 � z3 z2 � z3

1CA . (35)

[1] J. Koplik and H. Levine, Phys. Rev. Lett. 71, 1375 (1993). [2] D. Samuels, C. Barenghi, and R. Ricca, Journal of Low Tem-

13

perature Physics 110, 509 (1998).
[3] J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, Nature

432, 165 (2004).
[4] D. Kleckner and W. Irvine, Nature Physics 9, 253 (2013).
[5] M. V. Berry and M. R. Dennis, Journal of Physics A: Mathe-

matical and Theoretical 40, 65 (2007).
[6] X. H. Chao, B. Y. Zhu, A. V. Silhanek, and V. V. Moshchalkov,

Phys. Rev. B 80, 054506 (2009).
[7] S. Kim, C.-R. Hu, and M. J. Andrews, Phys. Rev. B 69, 094521

(2004).
[8] S. Kim, J. Burkardt, M. Gunzburger, J. Peterson, and C.-R. Hu,

Phys. Rev. B 76, 024509 (2007).
[9] E. Coskun and M. K. Kwong, Nonlinearity 10, 579 (1997).

[10] Q. Du, Journal of Mathematical Physics 46, 095109 (2005).
[11] I. A. Sadovskyy, A. E. Koshelev, C. L. Phillips, D. A. Karpeev,

and A. Glatz, arXiv:1409.8340 [cond-mat.supr-con] (2014).
[12] A. Glatz, H. L. L. Roberts, I. S. Aranson, and K. Levin, Phys.

Rev. B 84, 180501 (2011).
[13] I. Aranson, A. Bishop, I. Daruka, and V. Vinokur, Phys. Rev.

Lett. 80, 1770 (1998).
[14] M. B. Hindmarsh and T. W. B. Kibble, Reports on Progress in

Physics 58, 477 (1995).
[15] I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).
[16] E. Hamm, S. Rica, and A. Vierheilig, in Instabilities and

Nonequilibrium Structures VI, Nonlinear Phenomena and Com-
plex Systems, Vol. 5, edited by E. Tirapegui, J. Martnez, and
R. Tiemann (Springer, 2000) pp. 207–217.

[17] S. Madruga, H. Riecke, and W. Pesch, Phys. Rev. Lett. 96,
074501 (2006).

[18] P. Olsson, Europhys. Lett. 58, 705 (2002).

[19] P. Olsson and S. Teitel, Phys. Rev. B 67, 144514 (2003).
[20] K. O’Holleran, F. Flossmann, M. R. Dennis, and M. J. Pad-

gett, Journal of Optics A: Pure and Applied Optics 11, 094020
(2009).

[21] R. Dändliker, I. Märki, M. Salt, and A. Nesci, Journal of Optics
A: Pure and Applied Optics 6, S189 (2004).

[22] K. O’Holleran, Fractality and topology of optical singularities,
Master’s thesis, University of Glasgow (2008).

[23] It is possible to devise a slightly more compact scheme since
there are only 36 independent states.

[24] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey,
Engineering with Computers 22, 237 (2006).

[25] D. H. Douglas and T. K. Peucker, Cartographica: The Interna-
tional Journal for Geographic Information and Geovisualization
10, 112 (1973).

[26] U. Ramer, Computer Graphics and Image Processing 1, 244
(1972).

[27] P. J. Schneider, in Graphics Gems, edited by A. S. Glassner
(Academic Press, 1990) pp. 612–626.

[28] V. Vlasko-Vlasov, A. Koshelev, A. Glatz, C. L. Phillips,
U. Welp, and W. Kwok, Submitted (2014).

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irre-
vocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Govern-
ment.

